View on Lipids of Microorganisms from the Standpoint of Prebiotic and Biological Evolution* PART I
Leonid Andreev
Part II: https://systemity.livejournal.com/4661607.html
Original paper "View on Lipids of Microorganisms from the Standpoint of Prebiotic and Biological Evolution" published in: Voprosy Evolutsii Bakterij (Evolution of Bacteria), USSR Academy of Sciences, Center for Biological Research, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 1984, pp. 93-119 (https://www.dropbox.com/s/ tx666ilga018yvt/ OriginOfLifeRus.pdf).
This translation was first published in 2004 on the company website of Equicom, Inc. which is no longer online.
Contents:
• Specificity of lipids as an object of molecular biological studies
• Cellular level of lipid studies
• The concept of polylipids
• Interaction between polylipids and proteins
• Role of fatty acid residues
• Enzymes and coenzymes
• Principle of quasi-equilibrium of biosynthesis of bacterial lipids
• On the origin of life on Earth
• Macromolecular chronometry
• Molecular model of a protobiont
• Conclusions
Specificity of lipids as an object of molecular biological studies
Modern molecular biology incorporates a number of research areas dealing with substances and processes of general biological significance. Those areas of research, stimulated and inspired by the efficacy of the currently available physico-chemical methods, considerably differ in methodologies and – what is especially important – due to their specific developmental backgrounds, they have different levels of relationship with cellular biology.
When that relationship is lost or is not yet strong enough, it is often understood as an indication that some of the problems of physical chemistry of bioorganic molecules may be as broad and complex as the issues encountered with in the study of the functioning of live cells. This concerns particularly investigations of biological macromolecules that are functionally active outside the cells that synthesize them. That kind of misconception is not accidental. The awareness of the fact that, despite a theoretically possible large variety of structural and functional organizations of biopolymers, the Nature has only a limited number of their variants, impedes the advance of researchers in physics and chemistry of the functionality of such molecules, as it makes them divert to working on problems which require qualitatively different approaches and expertise and force them to study such properties of organisms which require deep empirical knowledge. This is a psychological reason that explains why many molecular biologists at least sympathize with, if not fully concede to, the thesis that the notion of ‘cell’ “has become a brake on the progress toward the understanding of live structures at the molecular level” and that “one may stop treating the cell as a biological unit but consider it as merely one of the stages of a complex chain of transformations” [16]*.
In practice, such views may seem to be justified as the attempts not to limit oneself to the “barest necessities” of evolutionary biology and “biological purposefulness” and, instead, consider the cell to be “merely one of the stages of a complex chain of transformations” may often be helpful in extensive fundamental investigations in molecular biology, leading to innovative approaches to various aspects of the functioning, systematics and evolution of live organisms. A classical example of such fundamental works in molecular biology that already by now have significantly contributed into the progress in evolutionary biology, is the method of macromolecular chronometry developed a quarter of a century ago [34] based on physico-chemical, rather than biological, logic.
______________________________ ___________________________
* Rendition is based on the Russian edition of the source book.
( Read more... )

Leonid Andreev
Part II: https://systemity.livejournal.com/4661607.html
Original paper "View on Lipids of Microorganisms from the Standpoint of Prebiotic and Biological Evolution" published in: Voprosy Evolutsii Bakterij (Evolution of Bacteria), USSR Academy of Sciences, Center for Biological Research, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 1984, pp. 93-119 (https://www.dropbox.com/s/

Contents:
• Specificity of lipids as an object of molecular biological studies
• Cellular level of lipid studies
• The concept of polylipids
• Interaction between polylipids and proteins
• Role of fatty acid residues
• Enzymes and coenzymes
• Principle of quasi-equilibrium of biosynthesis of bacterial lipids
• On the origin of life on Earth
• Macromolecular chronometry
• Molecular model of a protobiont
• Conclusions
Specificity of lipids as an object of molecular biological studies
Modern molecular biology incorporates a number of research areas dealing with substances and processes of general biological significance. Those areas of research, stimulated and inspired by the efficacy of the currently available physico-chemical methods, considerably differ in methodologies and – what is especially important – due to their specific developmental backgrounds, they have different levels of relationship with cellular biology.
When that relationship is lost or is not yet strong enough, it is often understood as an indication that some of the problems of physical chemistry of bioorganic molecules may be as broad and complex as the issues encountered with in the study of the functioning of live cells. This concerns particularly investigations of biological macromolecules that are functionally active outside the cells that synthesize them. That kind of misconception is not accidental. The awareness of the fact that, despite a theoretically possible large variety of structural and functional organizations of biopolymers, the Nature has only a limited number of their variants, impedes the advance of researchers in physics and chemistry of the functionality of such molecules, as it makes them divert to working on problems which require qualitatively different approaches and expertise and force them to study such properties of organisms which require deep empirical knowledge. This is a psychological reason that explains why many molecular biologists at least sympathize with, if not fully concede to, the thesis that the notion of ‘cell’ “has become a brake on the progress toward the understanding of live structures at the molecular level” and that “one may stop treating the cell as a biological unit but consider it as merely one of the stages of a complex chain of transformations” [16]*.
In practice, such views may seem to be justified as the attempts not to limit oneself to the “barest necessities” of evolutionary biology and “biological purposefulness” and, instead, consider the cell to be “merely one of the stages of a complex chain of transformations” may often be helpful in extensive fundamental investigations in molecular biology, leading to innovative approaches to various aspects of the functioning, systematics and evolution of live organisms. A classical example of such fundamental works in molecular biology that already by now have significantly contributed into the progress in evolutionary biology, is the method of macromolecular chronometry developed a quarter of a century ago [34] based on physico-chemical, rather than biological, logic.
______________________________
* Rendition is based on the Russian edition of the source book.
( Read more... )
